

Particle-bound nutrients and trace substances in small streams: Implications for the aquatic environment and presentation of a novel sampling method Flödl, P.¹; Long, A.²; Hauer, C.¹; Zoboli, O.²

¹Institute of Hydraulic Engineering and River Research (BOKU University) ²Institute for Water Quality and Resource Management (TU Wien)

Scope

- Why is it worth investigating small rivers?
- ~70 % of the rivers are 1st or 2nd order rivers (according to Strahler number) in Austria (cf. Fürst et al., 2003)
- Ecological **importance of tributaries** (e.g. Milner et al., 2018)
- But, often not easy to sample...
- low discharges, low velocities, low bed gradients
- Influences of **landuse** (e.g. soil erosion, surface run-off)
- **Remote places** (extensive maintenance not possible)

\rightarrow Lack of simple samplers for suspended sediment and floating matter

Biological importance in the study region – Freshwater Pearl Mussel (*Margaritifera margaritifera*)

- (mikro) pollutants and high loads of nutrients affect the freshwater pearl mussel in all age stages
- Phosphorus pollution is negatively correlated with FWPM population (e.g. Degerman et al., 2013)

vater pearl mussel in all age stages ation (e.g. Degerman et al., 2013)

Causes and impact assessment

• Ecological and chemical status according to the EU WFD

snapshot (grab samples) $\leftarrow \rightarrow$ long-term effects (biological status)

 In rivers with bi-modal grain size distribution and increased sediment load, the main causes of FWPM decline are still unclear

qualitative problem (nutrients, pollutants) $\leftarrow \rightarrow$ quantitative issue (to much sand)

SOIS concept, **Material and Methods**

Monitoring of (ubiquitous) trace substances was not included in the project budget. The investigations on particle-bound pollutants were carried out on our own initiative and with limited resources

Co-funded by the European Union

Project Number: ATCZ37

Concept of the novel sampling method: Stationary Organic and Inorganic Sampler (SOIS)

BOKU

The aim is to collect sediments with a grain size < 2 mm

Based on the bedload trap of Bunte et al. (2004)

Concept of the novel sampling method: Stationary Organic and Inorganic Sampler (SOIS)

Material and Methods

Höntzsch ZS25 ZG1

Material and Methods

- Maltsch river (Elbe catchment)
- Catchment size ~ 100 km² with 3 main subcatchments (Maltsch, Felberbach and Maltsch below the junction)
- Last stocks of the freshwater pearl mussel in Austria
- **2 WWTP** in the immediate vicinity of the sampling points
- Sampling sites (n = 6)
 - Sampling with SOIS
 - Volumetric sediment samples (n = 2)

Results

Results of the novel sampling method: Stationary Organic and Inorganic Sampler (SOIS)

- In the field, the water flow was qualitatively visible
- A reduction in the flow velocity was measured as a result of the mesh clogging
- Flow velocities are still high enough to transport sediments with a grain size < 2 mm

	Flow velocities				Flow velocities			
	close to the river bed				close to the water surface			
	Vd0 (m/s)	Vd3 (m/s)	v alteration (m/s)	v alteration (%)	Vd0 (m/s)	Vd3 (m/s)	v alteration (m/s)	v alteration (%)
Ref. left	0.04	0.05	-0.01	-22%	0.27	0.27	0.00	0%
Ref. mid	0.14	0.09	0.05	63%	0.28	0.26	0.03	10%
Ref. right	0.09	0.09	0.00	0%	0.25	0.27	-0.02	-9%
SOIS left	0.11	0.06	0.05	93%	0.28	0.23	0.05	22%
SOIS mid	0.10	0.06	0.04	74%	0.29	0.23	0.06	27%
SOIS right	0.13	0.11	0.03	25%	0.28	0.22	0.06	26%

ne mesh clogging vith a grain size < 2 mm

Results – particle-bound nutrients and pollutants (1)

Comparison of streambed samples and SOIS material

- Higher proportion of organic material in SOIS samples
- Proportion of (easily) **bio** available phosphorus was higher in SOIS samples

Dry matter

Deposited sediment
 SOIS

BOKU

Deposited sediment
 SOIS

Results – particle-bound nutrients and pollutants (2)

Implications for the aquatic environment

Implications for the aquatic environment

- Possible underestimation of nutrient and pollutant concentrations if only one medium (water / sediment) is analyzed
- In addition, (biological) conversion and decomposition processes in the riverbed can lead to an underestimation of nutrient and pollutant concentrations
- In the case of **barriers and dams**, **sediment** stratification with different grain sizes and pollutant concentrations can also be detected (cf. Thiebault et al., 2021)

BOKU

Implications for the aquatic environment

- The (natural) variability of the river makes predictions and modeling of trace substances quite complex
- In bi-modal rivers of the **Bohemian Massif, high** sediment loads are mobile even at low **discharges** (influence through sampling time)
- Major challenges even with well-researched particle-bound nutrients and pollutants
- Even in small streams, a high number of samples is required

BOKU

Implications for the aquatic environment

- PAHs: depending on the molecular weight different hydrophobic / hydrophil characteristics (possible reason why only PAHs with higher molecular weight were detected in this study)
- Similar results for PFAS group (hydrophobic / hydrophil characteristics)
- \rightarrow Sampling design is particularly important in small rivers with (very) low pollutant concentrations
- Regarding EU WFD: possible risk of inadequate recommendations for action if low concentrations of nutrients and pollutants are detected

 \rightarrow urgent need for research into the behaviour (mobility, fate) of ubiquitous substances in freshwater ecosystems

Ongoing research in the new BOKU River Lab

Investigating nutrient and pollutant transport in novel flume experiments under controlled morphological and physico-chemical conditions

Substrate scenarios (i-iv)

Peter Flödl, Dipl.-Ing. Dr. Institute of Hydraulic Engineering and River Research

BOKU University Am Brigittenauer Sporn 3/III, 1200 Wien

e-mail: peter.floedl@boku.ac.at tel: +43 1 47654-81928 web: www.boku.ac.at/wau/iwa

