Budapest University of Technology and

Benchmarking the persistence of organic Technology and Reparties micropollutants in large European rivers

Mark Honti^{1,2}, Márton Zsugyel¹, Laura Varga², Carolin Seller3, Kathrin Fenner3

1 HUN-REN—BME Water Research Group, 2 BME, 3 EAWAG

Funding: UBA (Germany) FKZ 3717 65 409 0, NKFIH (Hungary) 2018-1.2.1-NKP-2018-00011

Active pharmaceutical ingredients (APIs)

2

• Covered by EU REACH regulatory framework (Registration, Evaluation and Authorization of CHemicals) PBT (persistent / bioaccumulating / toxic) assessment obligatory to identify hazardous compounds

- APIs: ubiquitous organic micropollutants
	- popular or used for chronic diseases: ~continuous emissions
	- 100s detected in most European rivers
	- bioactive by design \rightarrow potentially harmful for ecosystems and non-targeted humans

- -
	- Persistence testing by "simulation" lab experiments

Rhine km

Rhine km

Which organic micropollutants?

- Globally standardised "simulation" lab experiments
	- Testing of ready biodegradability, hydrolysis, etc.
	- OECD guidelines 308 and 309
		- 308: biotransformation in water-sediment systems
		- 309: biotransformation in water

Persistence testing

- Lab systems vs. "the environment"
	- representativity
		- water:sediment ratio
		- redox conditions
		- microbial composition
	- reproducibility
		- microbial composition
- **Real environmental persistence can be learnt from field data**
	- **but how?**

Relevance of laboratory persistence

- Connect some of the most populated inland regions
- Transport most of the inland pollution into the seas
	- Large emissions require large dilution capacity
- Possess enough residence time to expect visible effects of transformation (nP behaviour)
	- Scaling properties of stream networks → water covers most of the travelled distance in large rivers

Why large rivers?

- Large rivers: huge stream network (river continuum vs. stream graph)
- Thousands of (unknown) emission sources (WWTPs)
- Expressed environmental gradients of all kinds
- Anticipated high diversity in biotransformation potential

Analysing the fate of APIs in large rivers: need a catchment-scale approach

Complexity of large rivers

Compound: CAR

gabapentin

Degradation in the Rhine (IKSR SMPC coata, 2017) P canoaign 2 0 2 1 0 1 0 1 0 1 0 \pm 0 \pm – Final report P1 campaign P3 campaign **Compound: GAB**

Lessons learnt from modeling the Rhine catchment

8

- Model describes observations, but
	- assessed (bio)transformation is conditional on
		- emission data
		- sediment conditions
		- stream section geometry
	- transformation rate (~persistence) is rather uncertain **Need a less explicit approach…**

Persistence benchmarking in a lake

Zou et al. (2014), Zou et al. (2015), McLachlan et al. (2016)

Theory: *Making a full mass balance model in a lake can be avoided by using benchmarks that only differ from the analysed compound in the factor/property of interest.*

For persistence: a conservative benchmark compound (B) can be used to estimate the degradation rate constant (k [d-1]) in steady state.

IS Q IB Q = $O_S Q + kO_S V$ O_B

IS IB = *OS* O_B $+ k\tau$

In a lake with a single continuous source, the degradation rate constant of a non-conservative substance (S) can be estimated as:

$$
k_{S} = \frac{\frac{I_{S}/I_{B}}{O_{S}/O_{B}} - 1}{\tau}
$$

where I is input concentration [g m⁻³], O is outflow concentration [g m⁻³], τ is hydraulic residence time [d].

OS

Lakes vs. large rivers

Differences in transport and emission sources

• Rivers have an expressed direction of transport and MANY, often non-measured emission

• a simple mass balance between a pair of points (=input, output) is problematic: it seems impossible to find a reach that (1) does not have significant inputs in between, (2) is long enough to show noticeable degradation, and (3) has very precise measurements at the

• The approach could be applied to a shorter section with modification for lateral transport, but

- Lake = single black-box reactor with known inputs and output.
- points (incl. direct emissions and tributaries).
-
- endpoints (w.r.t. the expected removal).
- system (grey box approach).

• Nevertheless: we may have many observation points along the river, so we can look inside the

Dissipation in a river

Single source case

Use fluxes to avoid dilution effects.

With instant mixing and dissipation, the longitudinal flux profile:

where F is flux [g d⁻¹], x is the longitudinal coordinate [km], and k' is the longitudinal dissipation constant [km-1]. Making the benchmark:

$$
F(x) = F_0 \exp(-k'x)
$$

$$
\frac{F_S}{F_B}(x) = \frac{F_{S,0}}{F_{B,0}} \exp(-k'_S x), \text{ so then } k'_S = -1
$$

Multi-source case

Multi-emissions complicate longitudinal flux patterns.

Variable momentary ratio between F_S and F_{B,} need to know magnitude and position of sources

 no longer simplifies to $F_S(x)F_{B,0}$ $F_B(x)F_{S,0}$ $F_S(x)$ $F_{S,0}$

Not a viable method.

Dissipation in a river

Multi-source case

- Assume that emissions are unknown stationary stochastic processes with some crosscorrelation and a steady mean-ratio
- Don't have to know single emissions or properties of Es or E_B

ES [g d−1]

 F_S , F_B [g d^{−1}]

x [km]

e B

Dissipation in a river

Benchmarking from longitudinal river data DEIICHINI KING JI VIII JONG JUUUHI II VEI UALA ԚI ^ԥ ԧঘঘ গ^ᅫ maan in maanda waxaa in in in in jiraan in in in jiraan in in jiraan in in in jiraan in in in in in in in in i

if $\tilde{\mathcal{L}}^{\text{max}}$ joint $\tilde{\mathcal{L}}^{\text{max}}$ if $\tilde{\$

- \bullet Suppose that fluxes of compounds S and B are measured along a river
- (Emissions of S and B are spatially variable, but their <u>mean</u> ratio stays constant) \bullet (Emissions of S and B are spatially variable but their mean ratio stavs constant
- \bullet Then for a conservative B one can deduce the statistical properties of the benchmark ratio as: • Then for a conservative B one can deduce the statistical properties of the ben

$$
\mathrm{E}\left[\frac{C_\mathrm{S}}{C_\mathrm{B}}\right] \approx \frac{v}{k_\mathrm{S}}\left(1-\exp\left(-\frac{k_\mathrm{S}}{v}x\right)\right)\left(\frac{\alpha}{x}+\frac{\beta}{x^2}\right)
$$

$$
\text{Var}\left[\frac{C_\mathrm{S}}{C_\mathrm{B}}\right] \approx \frac{v}{k_\mathrm{S}}\left(1-\exp\left(-\frac{k_\mathrm{S}}{v}x\right)\right)\left(\frac{\gamma}{x^2}\left(1+\exp\left(-\frac{k_\mathrm{S}}{v}x\right)\right)-\frac{\delta}{x^3}\right)+\sigma^2
$$

- \bullet where x [km] is the distance downstream, v is flow velocity [km d-1] este ja ja kohalisti ja ja kohalisti ja kohalisti ja kohalisti ja kohalisti ja kohalisti ja kohalisti ja kohali
- k_S [d-1] is the dissipation rate of S (k_S '= k_S /v [km -1])
- \bullet α , β , γ , and δ are unknown constants, σ is the observation error \mathbf{w}_i \mathbf{p}_i \mathbf{y}_i and \mathbf{y}_i and anniversity centrality, \mathbf{y}_i is the existivity site.

0 200 700 700 700 700

Danube: heteroscedastic emission rates

; Ӹ^I Ӹ⁸ ԧ օ օφ ం ևφ ^ছᅫև ԧ [nf গԚ^I ^ԥ ԧ ԍև ঘ [nf গԚ^I ᅫօ ^ԧ গ [nf গԚ^I ^ԥ ॕԧ ԍօφॖঘঘ)

- JDS3 and JDS4 data
- Economic and cultural gradient
	- Cannot assume emission processes to follow the same distributions along the entire river
	- Need to split the river into homoscedastic sectors (which boundaries?)
	- Can only solve for expected value for a homoscedastic benchmark compound:

Benchmark model fits for Danube 0

● $\mathbf 0$

 \circ ●

 \circ $^\circ$

● ●

 $\breve{ }$

 $^{\mathsf{o}}$ $_{\mathsf{o}}$

●

 $\bm{\varpi}$ o^o

 $\mathbf \circ$

● ●

 o

 $\mathbf o$

 o

x [km] [km]

 $\mathbf{\circ}$

● ●●

 o ● ● o $\bm{\varpi}$ ●● $\overline{\mathbf{o}}$ $\bm{\circ}$ $\mathbf{\circ}$

DIC:CAR (JDS4) LID:CAR (JDS4)

SMPC P1

Ruff et al. (2015)

Estimated persistence (Rhine & Danube) 5 10 15 20 Ruff (2015) rank

JDS3 rank

SMPC P1 rank

SMPC P3 rank

Conclusions

- Benchmarking is a viable presistence-assessment procedure for large rivers • given that (precise) concentration data are available along several days of
	- travel time
	- can distinguish between degrading and persistent compounds
	- does not need a complete catchment-model
	- BUT does not work across rivers (yet). Why?

